Cement’s Basic Molecular Structure Revealed: Robustness Comes From Messiness, Not a Clean Geometric Arrangement

By Denise Brehm
Civil & Environmental Engineering

In the 2,000 or so years since the Roman Empire employed a naturally occurring form of cement to build a vast system of concrete aqueducts and other large edifices, researchers have analyzed the molecular structure of many natural materials and created entirely new building materials such as steel, which has a well-documented crystalline structure at the atomic scale.

Oddly enough, the three-dimensional crystalline structure of cement hydrate — the paste that forms and quickly hardens when cement powder is mixed with water — eluded scientific attempts at decoding, despite the fact that concrete is the most prevalent man-made material on earth and the focus of a multibillion-dollar industry that is under pressure to clean up its act. The manufacture of cement is responsible for about 5 percent of all carbon dioxide emissions worldwide.

But an interdisciplinary MIT research team finally decoded the three-dimensional structure of the basic unit of cement hydrate in 2009, publishing their work in the Proceedings of the National Academy of Sciences.

Scientists had long believed that at the atomic level, cement hydrate