The Salp: Nature’s near-perfect little engine just got better

August 11, 2010

By Joel Greenberg
Woods Hole Oceanographic Institution

What if trains, planes, and automobiles all were powered simply by the air through which they move? Moreover, what if their exhaust and byproducts helped the environment?

Well, such an energy-efficient, self-propelling mechanism already exists in nature. The salp, a smallish, barrel-shaped organism that resembles a kind of streamlined jellyfish, gets everything it needs from the ocean waters to feed and propel itself. And scientists believe its waste material may actually help remove carbon dioxide (CO2) from the upper ocean and the atmosphere.

Now, researchers at the Woods Hole Oceanographic Institution (WHOI) and MIT’s Department of Civil and Environmental Engineering (CEE) report that the half-inch to 5-inch-long creatures are even more efficient than had been believed. Reporting in the Proceedings of the National Academy of Sciences online Aug. 9, they have found that the ocean-dwelling salps are capable of capturing and eating extremely small organisms as well as larger ones, rendering them even hardier—and perhaps more plentiful—than had been thought.

"We had long thought that salps were about the most efficient filter feeders in the ocean,” said Laurence P. Madin, WHOI Director of Research and one of the investigators. “But these results extend their impact down to the smallest available size fraction, showing they consume particles spanning four orders of magnitude in size. This is like eating everything from a mouse to a horse."

Salps capture food particles, mostly phytoplankton, with an internal mucous filter net. Until now, it was thought that only particles as large as or larger than the 1.5-micron-wide holes were caught in the mesh.

But a mathematical model suggested salps somehow might be capturing food particles smaller than that, said Kelly R. Sutherland, whose PhD thesis at the MIT/WHOI Joint Program formed the basis for a paper that appeared in the Aug. 9 issue of the Proceedings of the National Academy of Sciences. Madin and Professor Roman Stocker of MIT CEE are co-authors. In the laboratory at WHOI, Sutherland and her colleagues offered salps food particles of three sizes: smaller, around the same size as, and larger than the mesh openings.

“We found that more small particles were captured than expected,” said Sutherland, now a postdoctoral researcher at Caltech. “When exposed to ocean-like particle concentrations, 80 percent of the particles that were captured were the smallest particles offered in the experiment."

This finding is important for a number of reasons. First, it helps explain how salps—which can exist either singly or in “chains” that may contain a hundred or more—are able to survive in the open ocean, their usual habitat, where the supply of larger food particles is low. Madin, who was Sutherland’s advisor, adds: “Their ability to filter the smallest particles may allow them to survive where other grazers can't.”

Second, and perhaps most significantly, it enhances the importance of the salps’ role in carbon cycling. As they eat small, as well as large, particles, “they consume the entire 'microbial loop' and pack it into large, dense fecal pel