Study shows projected climate change in West Africa unlikely to worsen malaria

September 16, 2013

By Denise Brehm
Civil and Environmental Engineering

As public-health officials continue to fight malaria in sub-Saharan Africa, researchers are trying to predict how climate change will impact the disease, which infected an estimated 219 million people in 2010 and is the fifth leading cause of death worldwide among children under age 5.

This large pool of water near Banizoumbou, Niger, formed during monsoon season and became a breeding site for mosquitoes.  Photo / Teresa Yamana
This large pool of water near Banizoumbou, Niger, formed during monsoon season and became a breeding site for mosquitoes. Photo / Teresa Yamana

But projections of future malaria infection have been hampered by wide variation in rainfall predictions for the region and lack of a malaria-transmission model that adequately describes the effects of local rainfall on mosquitos, which breed and mature in ephemeral pools that form during and after monsoons in West Africa.

A new study led by Professor Elfatih Eltahir combines a new model of malaria transmission with global forecasts for temperature and rainfall to improve predictions of malaria with climate change. Eltahir and graduate student Teresa Yamana found that although the capacity for malaria transmission will change in some areas of West Africa, overall infection rates are not likely to increase. Climate change by itself is not likely to make the situation worse. A paper on the study appeared online Sept. 16 in the journal Environmental Health Perspectives.

“Malaria is one of the world’s leading public-health problems, taking a toll not only in lives, but also in economic terms, especially in Africa,” Eltahir says. “While other researchers are looking at the global impacts of climate change on broadly defined variables such as global temperature or global sea level, the biggest challenge faced by the global climate-change research community is how to come up with credible predictions for specific variables that are relevant to society, such as malaria incidence, defined at the appropriate regional and local scales.”

<