Small-scale parasitic battles may have epic evolutionary proportions

September 5, 2007

By Denise Brehm
Civil & Environmental Engineering

Scientists at MIT’s Department of Civil and Environmental Engineering and the Technion Israel Institute of Technology have for the first time recorded the entire genomic expression of both a host bacterium and an infecting virus over the eight-hour course of infection.

Their work leads them to speculate that viral infection may play a role in shaping the genetic repertoire of families of bacteria, even though individual infected bacteria die.

The results of this research likely will encourage scientists in several fields to rethink their approach to the study of host-virus systems, which are believed to play a key evolutionary role by facilitating the transfer of genes between species.

Professors Debbie Lindell of the Technion and Sallie Chisholm of MIT and co-authors report in the Sept. 6 issue of Nature that their study of a system involving the marine bacteria, Prochlorococcus, could indicate that the meeting between a marine bacterial host and its virus may not be just a battle between two individuals, but an evolutionarily significant exchange that helps both species become more fit for life in the ocean environment.

“The current status of host-virus relations has been influenced by a rich history of interactions,” said Lindell. “While we can’t definitively pin down the sequence of past co-evolutionary events, our findings suggest a novel means through which the exchange of beneficial genes between host and virus have been triggered.”

And, because the pattern of genomic expression in this host-virus system differed significantly from that in the more commonly studied system of intestinal bacteria such as E. coli and a virus called T7, the research will likely lead to increased appreciation for the need to study diverse types of marine bacteria, rather than relying on a single system as a broad model.

“We hope this work will encourage scientists to explore a wide range of host-pathogen systems and thus lead to a significant broadening of our understanding of the diversity of the host-pathogen interactions existing in nature,” said Chisholm, one of the discoverers of Prochlo-rococcus in 1985. “More importantly, these studies will help us understand the role these interactions play in shaping microbial ecosystems.”

Researchers have only in the past few decades begun discovering and studying ecologically relevant ocean bacteria, such as Prochlorococcus, which play a very important role in our lives. These single-celled photosynthetic bacteria use light energy to produce oxygen and organic carbon —supplying a significant portion of the oxygen we breathe—and forming the basis for the ocean food chain.

In previously studied host-virus systems, a virus hijacks the bacterial host cell and shuts down genome expression immediately, preventing the