Skip to navigationSkip to contentSkip to footer

2015 News Releases



Chasing the Plume

Written by:

Kelsey Damrad
Civil and Environmental Engineering

Civil and Environmental Engineering “TREX” course allows students to examine firsthand the effects of volcanic emissions on air and soil quality

As the residents of the Big Island of Hawaii continue to feel the adverse effects from the volcanic vog from the Kilauea volcano, a group of Course 1 students work to better understand exactly how the emissions are affecting the local air quality and ecology.

On January 13, 2015 a team of 22 Civil and Environmental Engineering (CEE) undergraduates and seven advisors embarked on a two-week journey to Hawaii to analyze the effects of the vog on the local environment. The subject, 1.092 TREX or Traveling Research Environmental Experiences, is part of the 1-ENG core in the environmental track offered during the Independent Activities Period followed by a second part in the spring semester. TREX provides students with dynamic and direct fieldwork experience in the study of environmental engineering, as well as exposure to in-depth analysis of data, interpretation of results and research presentations.

“This is an exciting opportunity for our students to go out into the field, build equipment, set up a real-world experimental campaign, and take the data back to MIT to dig deep into the analysis, interpretation, and formulate engineering solutions,” said Professor Markus Buehler, CEE Department Head. “Our new 1-ENG undergraduate program emphasizes such hands-on experiences that connect science, engineering and active learning in problems of societal relevance.”

The group of students, led by CEE Associate Professor Jesse Kroll, performed a variety of studies related to Kilauea’s effects on the surrounding air and soil quality. Located on the southeastern side on the Big Island, Kilauea is the most active Hawaiian shield volcano and thus a monumental source of sulfur dioxide pollution in the region.

The plume from the Kilauea volcano in HawaiiSulfur dioxide (SO2) is a poisonous gas that is also highly toxic to plants, and therefore the volcano can have major negative impacts on human and ecological health. In addition, SO2 will oxidize to sulfuric acid in the both atmosphere and soil, leading to a number of different negative effects, such as acid rain and leaching of heavy metals in the soils.

“This volcano has been erupting since the 80s,” he said. “But the vent close to where we were staying, only opened up in 2008 and drastically increased the amount of vog that people and plants on the island get exposed to.” For the past three trips, CEE undergraduates have traveled to the volcano to study its impact on the immediate environment.

The students worked in groups to collect data on the surrounding ecosystem’s air and soil quality. Their experience included a mixture of “in the trenches” fieldwork as well as opportunities to present their findings to different audiences.

In the first part of their work, the undergraduates used portable, homemade sulfur dioxide sensors to monitor the vog levels in real time and create high-resolution pollution maps. They also scattered sensors at multiple locations at different distances from the volcano to interpret the extent to which the vog can reach and ultimately influence different regions. “The students basically knocked on doors and asked people if they would ‘host’ a sensor for a couple weeks,” he explained.

“Vog has become a significant public health concern on the Big Island, and the kind of high-resolution pollution maps that the students produced provide exciting new insights into the variability of sulfur dioxide exposure, and the power of small sensor technologies for understanding our environment,” explained co-instructor and CEE Associate Professor Colette Heald.

For the study of the chemical analyses of the air, the students joined forces with University of Toronto Professor Jennifer Murphy and utilized more advanced instruments at a fixed site downwind of the volcano. These were installed within a Hawaii Department of Health air quality monitoring station in order to determine how the particle chemical composition of the volcanic smog changes during its time in the atmosphere.

The third part of the project, under the guidance of TREX co-instructor and CEE Assistant Professor Benjamin Kocar, centered on the examination of soil quality as a function of distance away from the volcano. The students – after choosing a selection of spots downwind of the crater – collected soil samples and analyzed their properties, including including acidity, sulfur and ammonia levels as well as aluminum concentration.

One of the more surprising elements found in the soil, said Kocar, was the high level of fluorine – a measurable consequence of the vog that is directly responsible for the notable surge of fluorosis in the population’s livestock.

While the poor air quality surrounding the volcano has been noted in the past, Kocar said that the effects of the soil has not been examined in this particular fashion. 

“What we are going to do now, in the lab at MIT, is measure the amount of fluorine in the soil samples,” Kocar explained. “ Is fluorine making its way into the food chain from the vog? This is the question we haven’t answered yet, but we will this semester.”

In conjunction with their hands-on research, the students had two opportunities to orally present their findings: Once to the scientists at the U.S. Geological Survey’s Hawaiian Volcano Observatory and another to a public talk attended by approximately 60 members of the community, which was sponsored by the University of Hawaii.

Approximately half of the TREX students will participate throughout the spring semester in the analysis of the collected data. Using the field measurements, the students will continue analyzing their collected data, in order to continue to explore the air quality and ecological impacts of Kilauea on the local environment and gain a fuller exposure to the entire scientific process.

“The main goal of this [program] is to give students experience in environmental fieldwork,” Kroll said. “Going out into the field is a central part in the study of environmental science and engineering, and the fact that students get to take part in a full-on field study, involving important questions and state-of-the-art techniques, is something that I think is very special about our department.”

According to Kocar, the opportunity for students to experience “real world research” in all of its imperfections is the most fascinating piece of the TREX process. To think in the field, he said, compile a set of results and try to find the right answer is an essential challenge for the students.